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06108 Nice Cedex, France

Received 17 September 2001 / Received in final form 5 March 2002
Published online 28 June 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. Due to their finite numerical aperture, both longitudinal and transverse stimulated Brillouin
scattering can occur in single-mode fibers. We discuss the role of the fiber structure and propose a coherent
model accounting for both effects. We show experimentally and numerically that, in some cases, the
perturbative cladding Brillouin scattering (CBS) can severely affect the dynamics of SBS Brillouin fiber
lasers. New dynamical regimes of long-fiber Brillouin ring lasers are presented, including stable trains of
modulated pulses.

PACS. 42.65.Es Stimulated Brillouin and Rayleigh scattering – 42.81.Dp Propagation, scattering,
and losses; solitons – 42.25.Gy Edge and boundary effects; reflection and refraction

1 Introduction

The nonlinear dynamics of Brillouin fiber lasers stands
among the richest and most various in Optics. Under the
one-dimensional approximation customary in single-mode
fibers, it is now fairly well understood in the frame of
the coherent 3-wave model of stimulated Brillouin scat-
tering (SBS) [1,2], which accounts for perturbative opti-
cal Kerr effect and spontaneous noise [3]. Such Brillouin
devices exhibit periodic, quasi-periodic [4–7], chaotic [8]
and even solitonic super- and sub-luminous pulse prop-
agation [9,10], as well as self-stabilisation of the phase
yielding ultracoherent regimes (thus linewidths as narrow
as a few hertz [11,12]). Yet, they are fairly simple to oper-
ate, due to the very high gain easily achievable with only
tens of mW of pump power in long enough single-mode
fiber, which allows very low finesses and reinjection rates.

It should nevertheless be kept in mind that single-
mode optical fibers actually have finite numerical
apertures. Moreover, “single-mode” optical fibers also
behave as highly multimode acoustic waveguides. An op-
tical beam can thus be scattered at a non-zero angle from
the fiber axis, and yet remain fully guided if this angle
is small enough. While SBS conventionally refers in fibers
to the backscattering (θ = π) of light by an axial acous-
tic wave, the small-angle effect concerns its “forward”
scattering on acoustic waves propagating radially on the
fiber’s cladding (from now on, we will design such acous-
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tic waves as “transverse”, in a geometrical sense, even
when their polarization is longitudinal). This transverse
Brillouin effect is thus designed as “cladding Brillouin
scattering” (CBS). It is sometimes referred to as the “elec-
trostriction mechanism” or the “acoustic interaction” in
the context of optical telecommunications [13,14], or as
spontaneous “guided-acoustic-wave Brillouin scattering”
(GAWBS) in quantum optics [15], and CBS-induced pas-
sive mode-locking of fiber lasers has been reported [16,17].

In Brillouin fiber lasers, low-frequency CBS-scattered
satellites of the Brillouin signal fall under the SBS gain
curve, yielding new dynamical features [18]. In this paper,
we propose a simple quasi-1D model of the Brillouin in-
teraction in single-mode fibers, taking into account their
finite numerical aperture and both longitudinal (SBS) and
transverse (CBS) processes. We discuss their relative ef-
ficiencies and give analytical expressions of the relevant
overlap integrals. We show experimentally that, in some
cases, the transverse perturbation can severely affect the
dynamics of long fiber Brillouin lasers, in very good qual-
itative agreement with the numerical simulations of our
coherent model.

2 Finite numerical aperture and quasi-1D
Brillouin process

The elementary Brillouin process can be described as a 3-
wave interaction, a “forward” optical “pump” wave (ωp,
kp; kp = nωp/c) being scattered onto an optical “Stokes”
wave (ωs, ks) through its interaction with an acoustical
wave (ωa, ka; ka = ωa/ca) created by electrostriction.
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Fig. 1. (a) Phase matching diagram for Brillouin backscat-
tering (θ = π, 1D SBS case). (b) Phase matching diagram
for transverse Brillouin scattering (|θ| < NA, CBS case). A
symmetric diagram describes CBS on the “backward” waves
(|π − θ| > NA).

In bulk media, it takes place in every direction, the en-
ergy and impulsion conservation laws (ωa = ωp − ωs,
ka = kp − ks) yielding ωa = ω0

a sin θ/2, where θ is
the scattering angle between the two optical beams and
ω0

a = 2nca/c ωp is the backscattering frequency shift. Ob-
viously, in an optical fiber with a finite numerical aper-
ture NA, whenever |θ| > NA and |π − θ| > NA, this
corresponds to overall additional optical losses typically
amounting to about 1% of the usual propagation losses
(Fig. 1). Here, electrostriction can be seen as the ten-
dency of dielectric matter to escape intensity gradients,
either longitudinal (interference patterns between co- and
counter-propagating optical waves) or transverse (optical
mode profile).

Let us first consider the usual SBS backscattering
case. In a typical single-mode fiber, this calls for very
high acoustic frequencies, typically ω0

a/2π = 33 GHz (for
λp = 532 nm, θ = π) and thus very short acoustic wave-
lengths (λa = 170 nm). The acoustic wavevector is mostly
axial (Fig. 1a) and the interaction thus involves longitudi-
nally polarized acoustic waves guided in the core region of
the fiber, which behaves as a multimode acoustic waveg-
uide (or anti-waveguide for some doping materials). Only
a scarce number of acoustic modes are available; since the
SBS gains depending on their overlap with the optical
modes, only the fundamental is relevant for acoustically
guiding fibers. The spectral width of the backscattered
wave basically depends on the acoustic losses of these in-
dividual modes, to which may be associated an effective
damping parameter.

The problem is somewhat more complicated in the
transverse CBS case (Fig. 1b). The involved acoustic
waves now propagate radially in the whole fiber struc-
ture (core + cladding + jacket), whose transverse section
can be considered as a resonator with a fundamental res-
onant frequency typically around 4 MHz [19]. The optical
guiding condition (|θ| < NA) yields an acoustic cutoff fre-
quency ωmax

a ≈ ω0
aNA/2 in the GHz range (ωmax

a /2π ≈
1.7 GHz @ 532 nm for NA = 0.1). The dominant losses

are the almost frequency-independent reflections at the
cladding/jacket and jacket/air interfaces [20], the acous-
tic propagation damping (∝ ω2

a) being relevant only in
the GHz range and above [21,22]. The CBS-active radial
(R0n) and torso-radial (TR2n) acoustic modes are easy to
determine analytically as long as the fiber has a cylindrical
symmetry and can be considered homogeneous [15], but no
general solution is available, and even numerical computa-
tions call for heavy hypothesis in the inhomogeneous case.
Both axial (SBS) and radial compressive acoustic waves
of velocity ca (ca = vcl

l ≈ 5 960 m/s in the silica cladding)
are longitudinally polarized with respect to their propa-
gation direction, while the deformation associated to the
torso-radial modes is normal to their propagation, yielding
a “shear” velocity vcl

s (≈ 3 740 m/s).

3 Evolution equation for radial acoustic waves

Since CBS acoustic waves propagate radially and we are
only interested on their behaviour in the core region of the
fiber, we can describe them through a single parameter,
namely the material density variation in the small core
region due to electrostriction. This noninstantaneous ma-
terial response can then be directly incorporated into the
evolution equation for the optical waves [23]; here, we will
rather account for it in a separated evolution equation, fol-
lowing the usual approach developed for SBS. The acous-
tic power is always very small, thus the propagation of the
acoustic waves remains linear [24] and any acoustical exci-
tation created through electrostriction can be decomposed
over a complete set of orthogonal modes [13] (some of them
lossy) with complex amplitude ρn and normalized and di-
mensionless transverse profiles Mn; the material density
thus reads:

ρ(r, ϕ, z, t) = ρ0 +
∑
n

ρn(z, t)Mn(r, ϕ) exp[−i(Ωnt)] + c.c.

To account for the transverse acoustic modal structure of
the fiber, we describe locally each CBS transverse acoustic
mode of frequencyΩn and damping γn through a standard
damped and forced harmonic oscillator equation:[
∂tt + 2γn∂t +Ω2

n

]
ρn(z, t) = −κn⊥ |E(z, t)|2 + fn(z, t)

(1)

fn is a Langevin noise term [3]. The optical intensity I
is related to the electrical field through: I = P/aeff =
(neffε0c/2)|E|2. In a SBS laser, both pump and Brillouin
waves, of intensities Ip,B, independently participate to the
excitation of the transverse acoustic modes: I = Ip + IB.

The validity of the phenomenological equation (1) is
quite general, as far as the diameter of the optical mode
remains much smaller than the acoustic wavelength (typ.
Ωn � 1 GHz). In ideal homogeneous fibers where only
pure rod modes are available, the direct electrostrictive
excitation of acoustical shear waves (TR2n) depends on
the polarisation state of the optical beams, with κshear

n⊥
vanishing for linear polarizations [25], while longitudinal
waves (R0n) are mostly polarization insensitive.
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Its general derivation in coated fibers would call for a
rather complex discussion of the coupling between com-
pressive and shear acoustic waves at the fiber boundaries,
which strongly depends on the acoustic impedance at the
cladding/jacket interface, and should take into account
the dielectric permeability changes associated to the strain
tensor changes. The complete map of the mechanical prop-
erties of the inhomogeneous fiber is seldom available, and
this difficult problem of elasticity theory is far beyond the
scope of this article; we will thus consider, when necessary,
only empirical values for κshear

n⊥ (which, in our experiment
with a severely inhomogeneous fiber, appears to be of the
same order of magnitude than the κn⊥ obtained for all
low-frequency R0n modes).

On the other hand, a much simpler hydrodynamical
approach of the density variations in silica glasses remains
valid when only compressional waves are involved; it al-
lows a straightforward derivation of equation (1) from the
fundamental laws of motion [1] for the compressive (R0n)
CBS modes, through ∂tρ−ρ0∇ ·∂tul. Only two forces are
to be taken into account, namely, for a cylindrical fiber, a
radial electrostrictive pressure

fel
r =

∂ε

∂ρ

ρ0ε0

2
∇⊥

∣∣E2
∣∣

and a friction fnr = 2γnur to which, for simplicity, we
will artificially incorporate as distributed losses the reflec-
tion losses at the cladding/jacket and jacket/air interfaces
(thus γn ≈ π × 2 MHz [20]). Remembering that Mn is
a solution of the free acoustic propagation equation in
the fiber, and taking into account the transverse profile
F (r, ϕ) of the (one) optical mode, the integration over the
fiber section yields equation (1), with

κn⊥ =
ρ0ε0

2
∂ε

∂ρ
B∆n . (2)

The expression of B∆n is given in Appendix A, together
with all other overlap integrals Bi. Let us emphasize that,
due to the transverse Laplacian it involves, its value, hence
the efficiency of CBS, might vary over several orders of
magnitude depending on the actual optical mode profile; it
would even vanish for an homogeneous acoustic mode pro-
file and a symmetrical optical mode profile in a perfectly
cylindrical fiber with infinite cladding [26]. The Lorentz–
Lorenz relation yields:

3ρ0
∂ε

∂ρ
=
(
n2 − 1

) (
n2 + 2

)
.

Simple hypothesis (homogeneous silica rod, Lorentzian
modes) yield κn⊥ ≈ 1 × 1014 kg m−1 s−2 V−2 for all low-
order radial modes (R0n, Ωn � 1 GHz). Available mea-
surements [20,21], including our own, suggest that this
value is typically underestimated by two orders of magni-
tude. This calls for a more detailed, and rather difficult,
analysis of the optical [27] as well as acoustical mode pro-
files, taking into account the small density and composi-
tion gradients in the core region.

When strictly monochromatic optical beams are in-
volved, as in fiber quantum optics experiments, it can be
relevant to distinguish separate carriers for the pump wave
and its copropagating scattered satellites with a frequency
difference Ωn (whose beating thus induce an additional
resonant excitation of the acoustic mode [14]). The statis-
tical properties of the noise term fn is then of prime im-
portance, and can be derived experimentally [20] or from
thermodynamical considerations [28,29].

4 Coherent model for coupled longitudinal
and transverse Brillouin processes

Here, we are interested in spectrally larger beams. In
the slowly varying optical envelope approximation, the
nonlinear density variations associated to the transverse
acoustic wave can be interpreted as a perturbative non-
instantaneous Kerr-like contribution to the optical index.
It is thus straightforward to generalize the usual coher-
ent 3-wave model of SBS [1]. The evolution equations
for the pump and Brillouin envelopes (from now on, by
“Brillouin” we will design the backward propagating SBS-
scattered Stokes wave) thus read:[
∂t +

c

neff
∂z + γe

]
Ep = iκSBSEB ρa + i

∑
n

κCBS
n Ep ρn

+ iκKerr
(
|Ep|2 + 2 |EB|2

)
Ep

(3)[
∂t −

c

neff
∂z + γe

]
EB = iκSBSEp ρ

∗
a + i

∑
n

κCBS
n EB ρn

+ iκKern
(

2 |Ep|2 + |EB|2
)
EB

(4)

where Ep,B are the complex amplitudes of the pump and
Brillouin optical fields, γe the optical losses, and neff the
effective refractive index of the fiber. ρa is the complex
amplitude of the slowly varying envelope of the usual high
frequency SBS longitudinal acoustic wave of frequency ω0

a
and damping γa = π∆νB. The Kerr coupling constant is
related to the effective (automodulation) nonlinear index
n2 through

κKerr =
n2ωp

2n
BKerr.

The electrostrictive coupling constants κSBS and κCBS
n

read:

κSBS =
ωp

4n2
eff

∂ε

∂ρ

√
ca
ceff
a

BSBS (5)

κCBS =
ωp

2n2
eff

∂ε

∂ρ
BSBS. (6)

The core of the fiber constitutes a weak acoustic waveguide
(or antiwaveguide) for the high frequency, longitudinally
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Fig. 2. Schema of electrostrictive energy transfers in a single-
mode fiber: the strongest effect is the resonant SBS coupling
between the forward pump (ωp) and backward Stokes (ωB)
waves; CSB induces satellites to each wave (±Ω), without
changing their direction; CSB satellites of the Stokes wave fall
into the SBS gain curve (∆νB � Ω) [SBS-enhanced CBS] and
are thus much stronger than those of the pump wave.

polarized axial acoustic wave ρa. Only its fundamental
mode, of effective velocity ceff

a and for which BSBS ≈ 1/2,
is to be considered. Higher order modes yield vanishing
overlap integrals [30,31]. The amplitude of this mode fol-
lows: [

∂t + ceff
a ∂z + γa

]
ρa = iκaEpE

∗
B + fa(z, t) (7)

where

κa =
neffωpρ0ε0

4c ceff
a

∂ε

∂ρ
Ba. (8)

When only one CBS mode is involved, the dynamics of
the coupled SBS and CBS problem in fiber is thus de-
scribed by the quasi-1D 4-wave coherent model consti-
tuted by equations (3, 4, 7, 1), which can be expressed in
dimensionless variables involving only two (Kerr & CBS)
parameters (see Appendix B). The generalization to a
(n + 3)-wave model n CBS modes is obvious, as well as
the reduction to a one-mode pure CBS problem ({NLS
equation + (1)} [14]); nevertheless, a Green function ap-
proach [32] is more tractable numerically for many CBS
modes, although difficult to implement with counterprop-
agating optical beams (thus in the SBS case).

Although the same electrostriction mechanism governs
both SBS and CBS, the efficiency of the former is much
higher, typically by two orders of magnitude. This is due to
the better overlap between the optical modes and the core-
confined SBS acoustical waves (purely geometric) than
with the cladding-spread CBS modes (Laplacian).

5 Perturbed long-fiber SBS laser

In a SBS fiber laser, CBS will thus appear as a pertur-
bative effect and can usually be neglected. Nevertheless,
it affects both the pump and Brillouin waves, creating
satellites in their spectra. Such satellites can no longer be
neglected when they affect the Brillouin wave and fall into
the SBS gain curve of width ∆νB (Fig. 2): low-frequency
CBS can then be strongly enhanced through its coupling
with SBS [33]; this mechanism is similar to the so-called

Fig. 3. Experimental setup.

“Brillouin enhanced four-wave mixing” involving the cou-
pling between SBS and the optical Kerr effect [34]. In or-
der to validate our coupled CBS/SBS model (and more
generally our coherent description of CBS), we will thus
compare its numerical simulation with an experiment in
a Brillouin fiber ring laser pumped by a 5 W cw pump
laser at λp = 532 nm, yielding ∆νB ≈ 150 MHz. We use a
basic mirror-and-lens setup, with and intracavity Faraday
isolator to prevent launched intensity fluctuations related
to the recoupling of the pump wave (Fig. 3).

Since this design was first proposed in the early
70s [35], the amazingly rich dynamics of Brillouin fiber
ring lasers has been characterized in almost every possi-
ble configuration. Basically, for a given launched pump
power, it is determined by two key parameters: the fiber
length L (actually the number of modes available un-
der the SBS gain curve, N = ∆νBnL/c, [2]) and the
Brillouin feedback parameter R [6]. Short-fiber Brillouin
lasers (N ≈ 1, or L < 10 m, typically) are intrinsically
continuous (cw) devices [7] of very high coherence [11].
Longer fibers (N ≈ 30−60) yield either cw outputs for
high R, or stable pulsed outputs in the low finesse regime
(typ. R < 0.1). Both types are mostly insensitive to third-
order effects, such as Kerr or CBS perturbations, except in
the unstable bifurcation region between pulsed and steady
regimes [33]. Very long devices (N > 100), on the other
hand, are quite sensitive to any perturbation, which allows
us to study the SBS/CBS coupling.

Our active medium will thus be a 150 m (N ≈ 110)
single-mode fiber (Spectran A0515B). We discuss else-
where [19] the influence of its jacket on the CBS-mode
structure of this non polarization preserving fiber of effec-
tive area aeff ≈ 45 × 10−12 m2, with 24 dB/km attenu-
ation @ 514.5 nm (γe = 5.6 × 105 s−1). A low feedback
(R ≈ 0.01) yields pulsed regimes for moderate pump in-
tensities. This compromise allows to consider that only
one longitudinal cavity mode falls into a given CBS gain
curve (FSR ≈ 1.36 MHz; γn/π ≈ 2 MHz), while an even
longer device (FSR � γn) would have a more complicated
dynamics. Even so, several CBS resonances can be simul-
taneously excited, but such regimes appear to be rare, and
typical FFT spectra of the Brillouin signal show only one
significant CBS resonance one order of magnitude higher
than those of the other resonances, whenever a severely
perturbed regime is attained.

We will thus focus our analysis on such regimes, dif-
ferent enough from the unperturbated SBS dynamics for
the identification of the perturbation to be unambiguous,
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Fig. 4. 24 MHz oscillation over the SBS mirror & FFT spec-
trum (Stokes wave, experimental).

Fig. 5. Stable modulated structures (Stokes wave,
experimental).

and which allows us to limit our simulations to a 4-
wave problem. Numerically, we adopt the quasi-1D 4-
wave model described in Appendix B for various CBS
resonances, and use a four-step Runge-Kutta algorithm
to describe the spatio-temporal interaction (ceff

a � c).
We take κSBS

a = 50 m s−1 V−1, κKerr = 2 × 10−3, γa =
π × 150 MHz [2] and γn = π × 2 MHz. κCBS

n varies from
10−3 to 6×10−2, mainly depending on the overlap integral
B∆n given by (A.1). Nevertheless, above a critical κCBS, we
have shown [18] that the dynamical behavior becomes less
sensitive to the coupling parameter than to the detuning
between Ω and the nearest longitudinal mode of the laser.
The critical perturbative value (≈10−3) is however greater
by two orders of magnitude than that obtained by eval-
uating B∆n for the simplest symmetrical radial acoustic
mode in standard fibers.

The simplest perturbed regime is an oscillation over
the cw SBS mirror (Fig. 4), at the frequency of the first
CBS modes (Ω = 5−25 MHz, or 4−20FSR), instead of
the first and second modes (ω/2π = FSR or 2FSR) solely
observed in shorter devices during the regular Hopf bi-
furcation towards the quasi-solitonic 3-wave regime [2,6].
Here, these “bare” SBS solitons (typically 28 ns FWHM)
leave place either to compressed or dilated (18–75 ns) un-
modulated pulses [18], or to evolutive modulated struc-
tures. Low CBS frequencies yield very large (typ. 100 ns)
and rather stable modulated Brillouin structures (Fig. 5);
higher modulation frequencies (Ω × 28 ns > 1) yield less
stable short pulses of very high maximum amplitude (up
to 15 times the pump power), as shown in Figure 6a. These
features are in excellent qualitative agreement with the nu-
merical simulations (Fig. 6b). Note that the phase velocity
of the modulation is different from the signal velocity.

(a)

(b)

Fig. 6. High peak-intensity transitories: (a) Stokes wave, ex-
perimental; (b) 4-wave SBS/CBS model, numerical.

6 Conclusion

For almost three decades, stimulated Brillouin scatter-
ing has been one of the most widely studied process in
single-mode fibers, either as a detrimental effect to be
avoided in optical telecommunications or, from a more
fundamental point of view, as one of the very few nonlin-
ear and noninstantaneous effects whose dynamics could be
entirely followed, experimentally and theoretically, from
its emergence from a shapeless initial noise up to stable
dynamical asymptotic stages [2]. These results have been
obtained under the very strong one-dimensional approxi-
mation, which now appears to be consistent only for short
enough interaction lengths. Transverse Brillouin effects
have been known to appear in very-long span (105−107 m)
fibers used in telecommunication systems [13], but we have
shown in the present paper that they may also severely af-
fect the dynamics of Brillouin lasers for fiber lengths in the
102 m range. We have proposed a quasi-unidimensional 4-
wave (or [3 + n]-wave) model taking into account both
longitudinal and transverse Brillouin scattering in single-
mode fibers, which appeared in excellent qualitative ac-
cordance with the experiments. We have also emphasized
the need of a precise characterization of both optical and
acoustical mode profiles to define a priori the efficiency of
the CBS process that, unlike SBS’s, can vary over several
orders of magnitude from one fiber to another.

Obviously, the dynamics of the complete prob-
lem, SBS + CBS− namely, a resonant 3-wave nonlinear
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process, with a noninstantaneous response in the ns range,
itself nonlinearly coupled to an independent oscillator
whose period lies in the µs range, is bound to be all
the more complicated. Surprisingly enough, we found that
even a perturbative coupling could, in some conditions,
yield new and rather stable dynamical regimes, namely
strongly modulated Brillouin pulses, both fully different
from the regular quasi-solitonic regime, and rather stable.
This study will be continued, and we discuss in another
paper [18] the existence of a cooperative regime in which
the transverse CBS perturbation would yield a squeezing
of SBS quasi-solitons and increase their stability.

The authors thank Jean Botineau for many valuable discus-
sions and comments.

Appendix A

We define the transverse profiles F for the optical mode,
R for the high frequency axial acoustic mode ρa, Mn for
the transverse acoustic mode ρn. rmax is the overall fiber
radius.

B∆n =

∫ 2π

0

∫ rmax

0
M∗n(r, ϕ)∆⊥

(
|F (r, ϕ)|2

)
r dr dϕ∫ 2π

0

∫ rmax

0
|Mn(r, ϕ)|2 r dr dϕ

(A.1)

BSBS =

∫ 2π

0

∫ rmax

0
R(r, ϕ) |F (r, ϕ)|2 r dr dϕ∫ 2π

0

∫ rmax

0 |F (r, ϕ)|2 r dr dϕ
(A.2)

BCBS =

∫ 2π

0

∫ rmax

0
M(r, ϕ) |F (r, ϕ)|2 r dr dϕ∫ 2π

0

∫ rmax

0
|F (r, ϕ)|2 r dr dϕ

(A.3)

Ba =

∫ 2π

0

∫ rmax

0 R∗n(r, ϕ) |F (r, ϕ)|2 r dr dϕ∫ 2π

0

∫ rmax

0
|R(r, ϕ)|2 r dr dϕ

(A.4)

BKerr =

∫ 2π

0

∫ rmax

0 |F (r, ϕ)|2 F (r, ϕ)r dr dϕ∫ 2π

0

∫ rmax

0
|F (r, ϕ)|2 r dr dϕ

· (A.5)

Appendix B

In order to homogenize the SBS coupling constants [1], we
may define a longitudinal electrostrictive field Ea through:

ρa = i
(

4ε0ρ0n
3

cca

)1/2

Ea. (B.1)

This reduces the pure SBS problem to only one coupling
constant:

κSBS
a =

ωp

4
∂ε

∂ρ

(
ε0ρ0

ccan

)1/2

×BSBSBa

[
=
(
gSBS

γaε0c
2

4

)1/2
]
· (B.2)

Now, we introduce the dimensionless variables and the re-
duded coupling constants for the whole SBS-CBS problem
(normalized with respect to κSBS

a and the constant input
pump E0

p) as follows:

Ẽ = Ep/E
0
p; τ = tκSBS

a

∣∣E0
p

∣∣ ; ξ =
nz

c
κSBS

a

∣∣E0
p

∣∣ ;
µe,a,n =

γe,a,n

κSBS
a

∣∣E0
p

∣∣ ; Ω̃ =
Ω

κSBS
a

∣∣E0
p

∣∣ (B.3)

Q = ρn
(κSBS

a )2

κn⊥
(B.4)

KKerr = κKerr

∣∣E0
p

∣∣
κSBS

a

(B.5)

KCBS =
4cca
ωpn2

(κSBS
a )2BCBS B∆n (B.6)

and obtain the quasi-1D 4-wave model:

[∂τ + ∂ξ + µe] Ẽp = −ẼBẼa + iKCBSẼpQ

+ iKKerr

(∣∣∣Ẽp

∣∣∣2 + 2
∣∣∣ẼB

∣∣∣2) Ẽp

(B.7)

[∂τ − ∂ξ + µe] ẼB = ẼpẼ
∗
a + iKCBSẼBQ

+ iKKerr

(∣∣∣Ẽp

∣∣∣2 +
∣∣∣ẼB

∣∣∣2) ẼB

(B.8)

[∂τ + µa] Ẽa = ẼpẼ
∗
B + f̃a (B.9)[

∂ττ + 2µn∂τ + Ω̃2
]
Q =

∣∣∣Ẽp

∣∣∣2 +
∣∣∣ẼB

∣∣∣2 + f̃ . (B.10)
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